Aqueous activity and sources of water on the chondrite parent asteroids

A. Krot¹, C. Alexander², K. Nagashima¹, F. Ciesla³, and W. Fujiya⁴

¹University of Hawaii, USA ²Carnegie Institution, USA ³University of Chicago, USA ⁴Max-Planck Insitute for Chemistry, Germany

Ages of aqueous alteration of asteroids: Most chondrite parent asteroids experienced aqueous alteration resulting in the formation of secondary minerals, including phyllosilicates, magnetite, Fe,Ni-sulfides, carbonates [(Ca,Mg,Fe,Mn)CO₃)], and fayalite [(Fe,Mn)₂SiO₄] [1]. Mineralogical observations and thermodynamic analysis suggest that the alteration of the various chondrite groups occurred under different physico-chemical conditions (temperature, redox conditions, pH, water/rock ratio). The chronology of aqueous activity on the chondrite parent asteroids can be inferred from 53 Mn ${}^{-53}$ Cr dating (53 Mn decays to 53 Cr with half-life of 3.7 Myr) of aqueously-formed carbonates and fayalite measured with secondary ion mass-spectrometry. Recently reported 53 Mn ${}^{-53}$ Cr ages of carbonates in CM [2,3], CI [4], CR [5] chondrites, and fayalite in CV [6], CO [6], and LL [7] chondrites indicate that aqueous alteration on the ordinary and carbonaceous chondrite (CC) parent asteroids occurred nearly contemporaneously, $\sim 3-5$ Myr after formation of Ca,Al-rich inclusions (CAIs), the earliest Solar System solids dated [8].

Accretion ages of chondrite parent asteroids: Assuming uniform distribution of a short-lived radionuclide 26 Al (decays to 26 Mg with half-life of ~0.7 Myr) in the disk at the canonical level (26 Al/ 27 Al ~ 5 × 10⁻⁵), the timing of aqueous alteration combined with estimates of peak metamorphic temperatures and thermal modelling of the ordinary and CC parent asteroids suggest that these bodies accreted ~2–3 Myr after CAI formation [2,3,7]. The inferred accretion ages of ordinary and CC parent asteroids are generally consistent with average 26 Al– 26 Mg ages (26 Al decays to 26 Mg with half-life of ~0.7 Myr) of their chondrules [9,10], suggesting that chondrule formation was rapidly followed by accretion and that 26 Al was the major heating source of aqueous alteration and thermal metamorphism on these bodies. The observed variations in the degree of aqueous alteration within a chondrite group may indicate that water ices accreted heterogeneously or that there was a fluid flow in their parent bodies.

Sources of water on the chondrite parent asteroids: According to the Grand Tack and Nice models, the extensively hydrated (C-, D-, and P-type) asteroids formed between and beyond the giant planets and were scattered into the main asteroid belt during a period of giant planet migration [11,12]. Bulk D/H ratio of chondrite water ices can potentially be used for testing this model, but cannot be measured directly. Alexander et al. [13] used the bulk hydrogen and carbon isotopic compositions of chondrites to estimate the water D/H ratio for a number of chondrite groups. The estimated D/H ratio of water in the extensively hydrated CI, CM, CR and ungrouped carbonaceous chondrite Tagish Lake (spectrally similar to D-type asteroids) are significantly lower than in the measured comets from Oort Cloud comets; the D/H ratio of water in CRs, however, is similar to that in the Jupiter Family Comet Hartley 2 [14]. Alexander et al. [13] concluded that CC parent asteroids accreted \sim 3–7 au from the Sun. These data provide important constraints on the Grand Tack and Nice models.

References: [1] Zolensky et al. 2008. Rev. Mineral. Geochem. 68:429. [2] Fujiya et al. 2012. Nat. Commun. 3:1. [3] Jilly et al. 2014. MAPS, in press. [4] Fujiya et al. 2013. EPSL 362:130. [5] Jilly et al. 2013. LPSC 44:2474. [6] Doyle et al. 2013. LPSC 44:1793. [7] Doyle et al. 2014. LPSC 45:1726. [8] Connelly et al. 2012. Science 338:651. [9] Kita & Ushikubo. 2012. MAPS 47:1108. [10] Nagashima et al. 2014. Geochem. J., submitted. [11] Walsh et al. 2011. Nature 475:206. [12] Levison et al. 2009. Nature 460:364. [13] Alexander et al. Science 337:721. [14] Hartogh et al. 2011. Nature 478:218.