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Orbit determination from two position vectors by the continuation-method optimal
parametrization

by the continuation method optimal parametrization
V. Kuznetcov1

1Institute of Applied Astronomy, Russian Academy of Sciences, Saint Petersburg

The old classic problem of finding an orbit of a celestial body from two position vectors at two instants
of time is considered. The history of the problem is more than two centuries old [1] and there are many
approaches for finding the solution. The current investigation i s based on the Shefer method [2], giving a
solution that is free from uncertainties and may be applied to general Keplerian motion. This method uses
a single equation with one unknown x. It may be written, in a common case, as:
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where θ21 is the angle between the vectors r1 and r2, τ21 = k(t2 − t1), k is the Gauss constant or its analog
for another center of attraction, and X(x) = F (1, 3, 5/2;x) is the hypergeometric function. For solving
equation (1), the application of the Newton-Raphson method with a choice for an initial approximate
solution was suggested [2]. Alternatively, the use of the continuation method with the best parametrization
is proposed [3,4]. For this, on the basis of the global homotopy, we will develop an analog of equation (1). It
depends on the parameter of homotopy µ ∈ [0, 1] and the initial values of the problem. The solution of such
extended equation is produced through the generation of a system of ordinary differential equations with
initial conditions. This method was suggested by Davidenko [5] and it is named as continuous continuation.
The optimal parameter of continuation is s — the length of arc along the current solution curve. As an
initial value for x, we shall take x = 0 — the value for a parabolic orbit. Thus, the problem is reduced to
solving the following Cauchy problem:
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where Z(x) = F (2, 4, 7/2;x) is the hypergeometric function, with initial conditions at the point s = 0 :
x(0) = 0, µ(0) = 1. It will be necessary to integrate (2) in the direction of increasing parameter s until
µ = 0 is obtained. The corresponding x is the desired solution. This algorithm loses efficiency and reliability
at x→ 1 or θ21 → 2π.
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