Comparing block populations across small bodies

C. Ernst¹, O. Barnouin^{1,2}, J. Noviello², and M. Daly³

¹Johns Hopkins University Applied Physics Laboratory ²Johns Hopkins University ³York University, Canada

Blocks have been resolved on the surfaces of many small bodies. Rendezvous missions have allowed for thorough global analyses down to sizes of 15 m for Eros [1] and 5–6 m for Itokawa [2,3]. Localized images have allowed measurements of blocks as small as 10 cm on both asteroids [1,4,5]. Several high-resolution images of Phobos [6–8] have allowed for localized block counts. Large blocks have been identified on Ida [9,10], Deimos [8], and Lutetia [11].

Blocks can give insight into the geologic processes that have affected small bodies. On Eros, most large blocks are linked to the Shoemaker crater, and pre-existing blocks were largely covered or eroded by Shoemaker ejecta [1]. Blocks on Phobos [7] and Lutetia [11] have also been linked to craters. On Itokawa, global analyses suggest the blocks are related to the accretion of the asteroid after a catastrophic disruption event [2,3]. Local comparisons of blocks in the smooth lowlands and the rough highlands indicate subsequent mobilization of smaller block sizes [4,5].

Cumulative size-frequency plots are common tools for characterizing block distributions. In log-log space, the plotted distributions typically exhibit linear trends. Best-fit slopes to the size-frequency distribution and the cumulative number of blocks per area may provide clues to the geologic evolution of small bodies. We will compare block size-frequency distributions of Eros, Itokawa, Phobos, Lutetia, and Deimos to determine whether the observed blocks are diagnostic of the processes that formed them and the properties of their host bodies.

References: [1] Thomas, P.C. et al. (2001) Nature, 413, 394–396. [2] Michikami, T. et al. (2008) Earth Planets Space, 60, 13–20. [3] Mazrouei, S. et al. (2014) Icarus, 229, 181–189. [4] Michikami, T. et al. (2010) Icarus, 207, 277–284. [5] Noviello, J.L. et al. (2014) LPS, 45, 1587. [6] Thomas, P.C. (1979) Icarus, 40, 223–243. [7] Thomas, P.C. et al. (2000) JGR, 105, 15091–15106. [8] Lee, S.W. et al. (1986) Icarus, 68, 77–86. [9] Sullivan, R. et al. (1996) Icarus, 120, 119–139. [10] Lee, P. et al. (1996) Icarus, 120, 87–105. [11] Küppers, M. et al. (2012) Planetary and Space Science, 66, 71–78.