Status of the Transneptunian Automated Occultation Survey (TAOS II)

M. Lehner^{1,2,3}, S. Wang¹, Z. Zhang¹, P. Ho¹, W. Yen¹, M. Reyes-Ruiz⁴, M. Richer⁴, K. Cook¹, S. Hsu¹, H. Chen¹, Y. Chang¹, D. Hiriart⁴, D. Ricci⁴, A. Szentgyorgyi³, T. Norton³, J. Geary³, G. Furesz³, C. Alcock³, and Y. Byun⁵

Academia Sinica Institute of Astronomy and Astrophysics
²University of Pennsylvania
³Harvard-Smithsonian Center for Astrophysics
⁴Universidad Nacional Autónoma de México
⁵Yonsei University

The Transneptunian Automated Occultation Survey (TAOS II) will aim to detect occultations of stars by small (\sim 1 km diameter) objects in the Transneptunian region and beyond. Such events are very rare ($<10^{-3}$ events per star per year) and short in duration (\sim 200 ms), so many stars must be monitored at a high readout cadence. TAOS II will operate three 1.3 meter telescopes at the Observatorio Astronómico Nacional at San Pedro Mártir in Baja California, México. With a 2.3 square degree field of view and high-speed cameras comprising arrays of custom CMOS imagers, the survey will monitor 10,000 stars simultaneously with all three telescopes at a readout cadence of 20 Hz. The survey will begin operation in 2016. This poster presents an update on the status of the site preparation and the technical development.