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The Vesta/non-vestoids connection: Is there another differentiated object out
there?
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(4) Vesta, an asteroid of 530-km diameter, is the biggest ”small body” to show a basaltic crust. Because of the
spectroscopic similarity, Vesta was considered to be the parent body for Diogenite, Howardite, and Eucrite
meteorites [1], collectively known as the HED meteorites. The discovery of small chunks of basaltic material
in the proximity of our planet [2] led to the classical scenario: multiple giant impacts in the south pole of
Vesta, observed by HST and Dawn [3,4], generated a swarm of basaltic objects, the so-called ”vestoids”.
Some were ejected on close orbital elements and created Vesta’s dynamical family [5]. Others, extracted
from a close encounter with a terrestrial planet, became near-Earth objects (NEOs) [6], or Mars-crossers
[7]. This scenario is strengthened by a number of facts: the HED meteorites share a similar oxygen isotopic
ratio [8] and members of the dynamical family show a basaltic, V-type composition, according to the current
taxonomy [9], similar to that of (4) Vesta.
V-type asteroids were also found outside the boundaries of the dynamical family: while at least one group
could be considered as ”fugitives” from the Vesta family [10]), it is difficult to explain the low-inclination
middle-belt vestoids, as well as the outer-main-belt V-types, beyond 2.7 au. (1459) Magnya, the first basaltic
asteroid discovered beyond Vesta’s limits [11], raised the possibility that a second, differentiated asteroid
exists in the main belt. The discovery of (21238) Panarea, a second basaltic asteroid not conventionally
linked to Vesta, called the classical model into question [12].
These ”V-type non-vestoids” in the middle and outer belt are generally very faint [12,13], and the noise
in the spectrum can lead to an erroneous taxonomic classification, particularly if based only on the visible
spectrum: in the current taxonomy [9], there are at least four classes with a deep 1-µm absorption band. Up
to now, only three of them were confirmed as basaltic asteroids, with the discovery of the prominent 2-µm
band: (1459) Magnya, (10537) 1991 RY16, and (21238) Panarea. It is noteworthy to underline that they all
lie on the other side of the 3:1 resonance, and, according to our current understanding of dynamical models,
it would be very unlikely that a fragment survived through the passage of such a powerful resonance.
We therefore analyzed V-type asteroids belonging to different dynamical families — i) vestoids, ii) fugitives,
iii) low-inclination vestoids, iv) NEOs, and v) non vestoids — to highlight possible differences among dy-
namical types and to compare each class with the HED meteorites. In the visible range, we made use of
several spectral parameters, such as the reflectivity gradients in the 0.5–0.7-µm and 0.8–0.92-µm ranges, the
relative maximum, and the apparent depth [14]. In the NIR range, we made use of parameters normally
compared in the literature (band centres, band depths, band separation) to infer mineralogical properties
[15], as well as different pyroxene compositions [16]. Finally, we compared band parameters from V-types
with data available from the Visible and InfraRed spectrometer (VIR) onboard the Dawn mission [17], which
mapped almost the whole surface of Vesta and acquired a total amount of 20 million spectra in 864 spectral
channels. All of the data are currently under analysis and the results will be presented at the ACM meeting.
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