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Using elementary symmetry considerations ,we present seven symmetry relations for the
phase matrix of horizontally oriented particles. These relations have a wide range of validity
and hold for all directions of incident and scattered electromagnetic radiation.

INTRODUCTION

We consider light scattering by a small volume element in a medium containing indepen-
dently scattering particles that are horizontally oriented. Examples of such particles are
various types of hydrometeors, like snow flakes and ice crystals. Suppose the volume ele-
ment is located at the origin of a coordinate system with axes x, y, and z (see Fig. 1). We
call the x, y plane the horizontal plane and the positive z-axis the local vertical. The matrix
transforming the Stokes parameters of the incident beam into those of the scattered beam is
the phase matrix. Here the meridian planes of both beams are used as a plane of reference
for the Stokes parameters.

Figure 1. Scattering by a local volume-element at O. Points N, P1 and P2 are located on a
unit sphere. The direction of the incident light isOP1 and that of the scattered light isOP2.

The phase matrix of a volume element plays a key role in studies of light scattering. It
occurs, for instance, as the kernel in the equation of radiative transfer [1, 2, 3, 4, 5, 6, 7]. The
phase matrix depends, in general, on the angles θ′ and φ′ of the incident beam and θ and
φ of the scattered beam. The azimuthal angles are measured clockwise from the positive
x-axis when looking in the direction of the upward vertical. If there is rotational symmetry
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about the local vertical the azimuth dependence reduces to the difference φ − φ′. Making
the Stokes parameters I, Q, U and V of a beam of light the elements of a Stokes vector, I,
the scattering process can be written as

Is(u, φ) = cZ(u, u′, φ− φ′)Ii(u′, φ′) (1)

where the superscripts s and i refer to the scattered and incident beam, respectively, u =
− cos θ and u′ = − cos θ′, c is a scalar that can be used for normalization purposes, and
Z(u, u′, φ− φ′) is the phase matrix of the volume element.

Quite general symmetry relations for the phase matrix of collections of particles that
are randomly oriented in three-dimensional space have been presented earlier [1]. The main
purpose of this contribution is to investigate, by means of elementary symmetry arguments,
which symmetry relations hold for the phase matrix of horizontally oriented particles.

We consider particles having a plane of symmetry. Such particles are identical to their
mirror particles. As an example, we first consider collections of hexagonal plates with two
broad flat sides in the horizontal plane, but with random orientation in that plane.

SYMMETRY RELATIONS

Reciprocity

The reciprocity principle corresponds to invariance of the ratio cause/effect under inversion
of time. This amounts to changing u′ into −u and u into −u′, as well as interchanging φ
and φ′ (see Fig. 1). The result is the reciprocity relation

Z(−u′,−u, φ′ − φ) = PZ̃(u, u′, φ− φ′)P, (2)

where P is the 4×4 diagonal matrix (1,1,-1,1) and a tilde above a matrix stands for the
transposed matrix.

Eq. (2) is well known from the theory for scattering by randomly oriented particles
[1, 3]. Since reciprocity holds, under certain conditions, for each individual particle in arbi-
trary orientation the validity of Eq. (2) does not depend on the orientation of the particles
[8, 9]. Sufficient conditions for reciprocity are that the dielectric, permeability and conduc-
tivity tensors of the particles are symmetric and magnetic fields can be ignored. We shall
henceforth assume that reciprocity holds for all particles considered in this work.

Mirror symmetry

It is clear that we have mirror symmetry with respect to the meridian plane of incidence.
Referring to Fig. 2, it is readily seen that, if an incident beam i1 gives rise (among others) to
a scattered beam r1, then the incident beam i2, which is the mirror image of i1 with respect
to the meridian plane of incidence, gives rise (among others) to the beam of scattered light
r2, which is the mirror image of r1 with respect to the meridian plane of incidence. Now i1
and i2 differ in the signs of their third and fourth Stokes parameters and so do r1 and r2.
Furthermore, we have φ2 − φ0 = φ0 − φ1. Using Eq. (1) first for r1 and then for r2, we
find the following mirror symmetry relation for the phase matrix
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Z(u, u′, φ′ − φ) = PQZ(u, u′, φ− φ′)QP, (3)

where Q is the 4 × 4 matrix diag (1,1,1,-1), so that PQ = QP = diag (1,1,-1,-1). An inter-
esting corollary of Eq. (3) is that, if a Fourier-series expansion is used to handle the azimuth
dependence of the phase matrix, the 2 × 2 submatrices in the upper left corner and the
lower right corner contain only cosine terms and in general an azimuth independent term,
whereas the other two 2× 2 submatrices possess only sine terms or vanish.

Figure 2. Illustration of the mirror symmetry relation for the phase matrix. If the incident
beam i1 gives rise (among others) to the beam of scattered light r1, then the incident beam
i2, which is the mirror image of i1 with respect to the plane of incidence, gives rise (among
others) to the beam of scattered light r2, which is the mirror image of r1 with respect to
the plane of incidence. The position angles of the polarization ellipses of the incident light
(dots) and scattered light (small arcs) are also indicated, as well as the sense in which the four
polarization ellipses are traced. [After Hovenier, [10]]

RotaƟonal symmetry

We have assumed rotational symmetry about the vertical (azimuthal symmetry). Therefore,
simultaneous rotation of the meridian planes of incidence and scattering about the vertical,
through any angle, gives no new symmetry relation. However, rotation of the horizontal
plane, together with the directions of the incident and scattered light, about a horizontal axis
over an angle π gives physically the same scattering problem, but the sign of the azimuth
difference must be switched [1]. This yields the symmetry relation

Z(−u,−u′, φ′ − φ) = Z(u, u′, φ− φ′). (4)

CombinaƟons

By combining the three fundamental symmetry equations Eq. (2), Eq. (3), and Eq. (4) we
find

Z(−u′,−u, φ− φ′) = QZ̃(u, u′, φ− φ′)Q. (5)
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Z(u′, u, φ− φ′) = PZ̃(u, u′, φ− φ′)P. (6)

Z(−u,−u′, φ− φ′) = PQZ(u, u′, φ− φ′)QP. (7)

and

Z(u′, u, φ′ − φ) = QZ̃(u, u′, φ− φ′)Q. (8)

CONCLUSIONS

Using symmetry arguments, we have found seven symmetry relations for the phase matrix
of horizontally oriented hexagonal plates. It is, however, directly clear from the symme-
try arguments that these relations must hold for many other kinds of horizontally oriented
particles. These include hexagonal columns with their long axes randomly oriented in a
horizontal plane and randomly rotated about their long axes. As long as the particles and
their orientation distribution are such that the three fundamental symmetry relations Eq. (2),
Eq. (3), and Eq. (4) hold, all seven symmetry relations are valid. A more extensive treatment
of the topic of this abstract is given in [11].
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