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We consider the generalized separation of variables, extended boundary condition, and gen-
eralized point-matching methods that apply single expansions of the electromagnetic fields
in terms of wave functions to solve the light-scattering problem. We consider especially the-
oretical studies related to analysis of infinite linear systems, questions of field-expansion con-
vergence, and the Rayleigh hypothesis. The passage from the infinite systems to truncated
ones used in calculations will be discussed, and numerical solutions provided by the methods
will be compared.

INTRODUCTION

The behavior of the electromagnetic (EM) fields E⃗, H⃗ in any medium is governed by the
macroscopic Maxwell equations. In the light scattering (LS) theory one usually considers
time-harmonic fields E⃗(r⃗, t) = E⃗(r⃗) e−iωt, where ω is the radiation frequency [1]. So, for
most of the media the Maxwell equations transform into

∆E⃗(r⃗) + k2(r⃗) E⃗(r⃗) = 0, ∇⃗ · E⃗(r⃗) = 0, (1)

where k(r⃗) is the wavenumber in the medium, and similar equations for the magnetic field
H⃗(r⃗) related to the electric one as H⃗(r⃗) = (iµ(r⃗)k0)

−1 ∇⃗ × E⃗(r⃗), where µ(r⃗) is the
magnetic permeability, k0 the wavenumber in vacuum.

The boundary conditions to Eqs. (1) are provided by continuity of the tangential com-
ponents of the fields at any interface, which gives for a scatterer with the surface ∂Γ

(E⃗inc(r⃗) + E⃗sca(r⃗)− E⃗int(r⃗))× n⃗(r⃗) = 0,

(H⃗ inc(r⃗) + H⃗sca(r⃗)− H⃗ int(r⃗))× n⃗(r⃗) = 0,

}
r⃗∈∂Γ

(2)

where E⃗inc, H⃗ inc, E⃗sca, H⃗sca, and E⃗int, H⃗ int are the fields of incident, scattered, and inter-
nal radiation, respectively, n⃗(r⃗) is the outward normal to ∂Γ . There is also the well-known
radiation condition at infinity for the scattered field.

Various methods are used to solve the LS problem for non-spherical scatterers (see,
e.g., the reviews [1, 3]). One often applies the separation of variables (SVM), extended
boundary condition (EBCM), and point-matching (PMM)methods based on the same single
expansions of the EM fields in terms of vector wave functions F⃗ν(r⃗)

E⃗(r⃗) =
∑
ν

αν F⃗ν(r⃗), H⃗(r⃗) =
∑
ν

βν F⃗ν(r⃗), (3)
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where αν , βν are some coefficients.

METHODS UNDER CONSIDERATION

Generalized SVM approach

Here one usually substitutes the expansions (3) in the boundary conditions (2), multiplies
these conditions by the angular part of different index wave functions and integrates the
results over the scatterer surface ∂Γ (see, e.g., [1, 4]). As a result one gets a set of linear
algebraic equations relative to unknown coefficients of the external (αsca

ν ) and internal (αint
ν )

field expansions {
A x⃗ sca +B x⃗ int = E x⃗ inc,
C x⃗ sca +D x⃗ int = F x⃗ inc,

(4)

whereA,B, ..., F are matrices whose elements are integrals of the wave functions and their
derivatives, x⃗ sca,int = {αsca,int

ν }∞ν=1, and x⃗ inc is a vector of the known coefficients of the
incident field expansion. Solution to the system (4) gives the unknown coefficients which
allows one to calculate any optical properties of a scatterer [4]. We consider the generalized
SVM when the approach is applied to particles of arbitrary shape (see for more details [4]).

Standard EBCM approach

In this case a surface integral formulation of the LS problem arisen from the Stratton-Chu
formula is utilized (see, e.g., [5])

∇⃗ ×
∫
S
n⃗(r⃗ ′)× E⃗ int(r⃗ ′) g(r⃗, r⃗ ′) ds′ − 1

ik0ε
∇⃗ × ∇⃗ × (5)∫

S
n⃗(r⃗ ′)× H⃗ int(r⃗ ′) g(r⃗, r⃗ ′) ds′ =

{
−E⃗ inc(r⃗), r⃗ ∈ Γ−,

E⃗ sca(r⃗), r⃗ ∈ Γ+,

where g(r⃗, r⃗ ′) is the free space Green function, Γ− and Γ+ mean the interior and exterior
of a scatterer, respectively, ε is the dielectric permittivity. The field expansions (3) and the
known Green function expansion in terms of some wave functions are substituted in the
extended boundary conditions (5). Linear independence of the basis functions allows one
to equal the expansion coefficients for each function F⃗ν (see for more details [4]). So, the
equations (5) give two matrix equations relative to the unknown expansion coefficients

{
QS x⃗

int = x⃗ inc,

x⃗ sca +QR x⃗ int = 0,
(6)

where the matrices QR, QS have the elements being integrals of the wave functions and
their derivatives. The EBCM suggested by Barber [6] and used by us [4] and Waterman's
null-field method discussed in [1] are practically the same.
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Integral generalized PMM approach

In the PMM one considers a residual δ describing fulfillment of the boundary conditions (2)
in a set of points {r⃗s}Ms=1 on the scatterer surface ∂Γ

δ =

M∑
s=1

{∣∣∣(E⃗inc + E⃗sca − E⃗int
)
× n⃗

∣∣∣2 + ∣∣∣(H⃗ inc + H⃗sca − H⃗ int
)
× n⃗

∣∣∣2}
r⃗=r⃗s∈∂Γ

.

(7)
The first N (in the generalized PMM N < M ) terms of the field expansions (3) are sub-
stituted in Eq. (7) and the residual is minimized in the least-square sense. The derivatives
of the residual with respect to the unknown coefficients αsca

ν , αint
ν for ν = 1, 2, ..., N are

made equal to 0, which gives 2N linear algebraic equations relative to these coefficients. As
a result, one gets a system like (4) but with other matrix elements [1, 4]. Replacing sum-
mation in Eq. (7) with integration provides more accurate results for smallerM being now
the number of knots [7]. So, hereafter we discuss such an integral generalized PMM. In our
theoretical analysis below this approach is considered for the case of N = ∞.

DISCUSSION OF THE METHODS

In computations one always deals with truncated expansions of the EM fields. They can be
considered as approximations to the infinite expansions giving the exact values. We discuss
theoretical aspects related to the infinite expansions (3), the infinite linear systems (4),(6)
and a passage from them to truncated systems as well as some numerical results. Generally,
we try to follow and extend the fundamental review [1, 2].

Convergence of infinite field expansions

This point is considered by analyzing singularities of the analytic continuations of the EM
fields [8]. We discuss the role played by the expansion convergence in the methods under
consideration and concern the Rayleigh hypothesis problem by debating a recent review [9].

InvesƟgaƟons of infinite linear systems

This aspect has not yet been discussed in the literature on the EBCM and generalized SVM.
We investigate the infinite systems (4) and (6) arisen in these methods and find the condition
of their solvability that involves distances to singularities of analytic continuations of the EM
fields. We also explain the connection between the pattern equation method (see [10] and
references therein) and the EBCM, which allows us to make important conclusions for the
far-field zone. Though equivalence of the EBCM and generalized SVMwas generally shown
in [11], we demonstrate equivalence of the infinite systems arisen in all the methods under
consideration in a more strict way.

Infinite system truncaƟon and numerical comparison of methods

Our passage to truncated systems is based on a proof that infinite systems are regular in
terms of [12]. Then they must have the only solution that can be found by the expansion
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truncation method. Using a homogeneous set of our generalized SVM, EBCM, integral
generalized PMM codes, we confront results of calculations with the theoretical predictions.
We also compare these numerical solutions for scatterers of different shape and structure.
Special attention is paid to the behavior of the truncated system condition numbers.

REVIEW OF APPLICATIONS OF THE METHODS
Finally, keeping in mind the above discussion, we give a review of works on development
and application of the SVM, EBCM and PMM approaches. We mainly concentrate on the
SVM and PMM as works on the EBCM are well reviewed (see [13] and references therein)
and discuss the use of different (spherical, cylindrical, spheroidal, and ellipsoidal) bases in
treatment of homogeneous and layered scatterers and their systems.
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