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tern equations methods 

A. G. Kyurkchan* and N. I. Smirnova 

Chair of probability theory and applied mathematics, Moscow Technical University of Com-
munications and Informatics, Aviamotornaya str. 8a 111024 Moscow. 

T-matrix method is compared to the pattern equation method. It is shown that the pattern 

equation method allows analytical averaging of particle orientation, as well as the T-matrix 

method. However, the pattern equation method is applicable to diffraction problems for a 

broader class of particle geometry and gives higher accuracy than the T-matrix method.  

INTRODUCTION 

The T-matrix method (TMM), proposed by Waterman more than forty years ago [1], is cur-

rently commonly used for solving wave diffraction problems arising in optics, radio physics, 

radio astronomy, etc. [2, 3]. T matrix interrelates incident and scattered wave spherical basis 

expansion coefficients. As such, T matrix depends only on physical and geometric characte-

ristics of a scatterer and is absolutely independent on propagation and polarization directions 

of the incident and scattered fields [2, 3].  

The pattern equation method, for the first time proposed in paper [4], also allows ob-

taining the solution of the diffraction problem in the form similar to TMM, but it is applica-

ble at significantly less stringent restrictions on scatterer geometry. Therefore, it is of interest 

to compare these two methods. 

TMM AND PEM ALGORITHMS 

In paper [5], it is shown that TMM is correct only if the scatterer geometry belongs to the 

class of Rayleigh bodies, i.e. such bodies that all wave field analytic continuation singularities 

are located inside of the sphere inscribed in a scatterer. Such class of geometries is particularly 

narrow.  

PEM allows to obtain the rigorous diffraction problem solution (i.e. theoretically with 

any given accuracy) for so called weakly non-convex bodies [4]. All convex bodies are part of 

this class.  

Let us perform a more detailed comparison of both methods. Consider two-

dimensional diffraction problem on a scatterer with Dirichlet boundary condition for sim-

plicity. As is well known, the scattered field cylindrical harmonic expansion 
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 coefficients nc  are related to the incident field (plane wave, 

propagating at angle 0  to the OX axis) expansion coefficients na  by the following formula 
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In PEM, similar to Eq. (1) formula is given by: 

 
1 0( )c I G c  , (4) 

where I  is the identity matrix and matrix G  and vector 0c  elements are given by [4]: 
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Obviously, although values 0
nc  are not incident wave cylindrical basis expansion coeffi-

cients, but similarly to na  coefficients in TMM, they depend (functionally) on the incident 

plane wave angle 0  only. As can be seen from Eqs. (5) and (6), in order to find vector c  in 

PEM, it is necessary to invert the matrix with much more complex element formulas than in 

TMM. However, the inverted matrix 1( )I G   is already essentially a T matrix that links vec-

tor 0c , characterizing the incident wave, to the scattered wave coefficients c , while in 

TMM, in order to obtain T matrix, it is still necessary to perform matrix Q  and 1H   multip-

lication (although those matrices are significantly more simple). Therefore, it is of interest to 

compare the computation speed and accuracy for both methods.  
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NUMERICAL RESULTS 

As an example, let us consider the diffraction problem for a plane wave with incident angle 

0 0   on Rayleigh ellipse with semiaxes 8, 11ka kc  . We calculate the scattering pattern 

as: 

( ) n in

n

n

g c i e 




  .    (7) 

Let us denote ( )Ng   - the scattering pattern, obtained by solving the truncated system 

(when its size is equal to 2 1 2 1N N   ). We calculate the difference between the patterns 

at different N as 
1 2 1 2

max

, max ( ) ( )N N N Ng g g    . If 
1 2

max 6

, 10N Ng   , i.e. at least 7 significant 

digits are agreeing  in the patterns, we consider that adequate accuracy is achieved and there 

is no point to increase N  any more. Additionally, we assess the graphic overlap of patterns.  

The calculated values of 
1 2

max

,N Ng  at different 
1 2, NN  for PEM and TMM are given in 

Table 1.  

Table 1. 

 PEM TMM 

max

10,15g  14.7334279 10  14.7133309 10  

max

15,20g  46.0765886 10  21.1055532 10  

max

20,25g  73.3979730 10  41.7063574 10  

max

25,30g  112.4759473 10  61.6644684 10  

max

30,35g  148.3348103 10  63.2701861 10  

 

As it shows, the PEM has much higher convergence rate and allows obtaining twice as 

good accuracy than TMM. In PEM, we have reached the desired accuracy of 610  already at 

20N  , whereas TMM did not obtain the desired accuracy at all. The highest possible accu-

racy, which PEM provides for a given scatterer, is 148.3348103 10 , but TMM achieves only 
61.6644684 10 . As it can be seen, at 35N   for PEM and at 25N   for TMM, the accura-

cy begins to decrease. This is caused by the increase of special function calculation error, 

which eventually leads to the failure of the algorithm (see [5]).  

Let us now compare the computation time. At 20N  , the computation time of PEM 

is 10.779 seconds and TMM is 9.224 seconds. At 35N  , the computation time of PEM is 

50.136 seconds and TMM is 21.502 seconds.  

We can see that, at smaller N  values, the computation time is about the same for both 

methods, but as N  increases, the computation time for PEM becomes significantly longer. 

The explanation is that in the case of TMM we calculate  2
2 1N   times a rather simple 

integral Eq. (3), whereas in the case of PEM we calculate  2
2 1N   times a much more 

complicated integral Eq. (5) plus 2 1N   times integral Eq. (6). However, during the first 10 
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seconds using PEM, we obtained the accuracy of 1010 , while using TMM for the same time 

we obtained only 510 .  

As already mentioned above, the applicability of PEM (any weak non-convex bodies) is 

much broader than the applicability of TMM (only Rayleigh bodies). This is another major 

advantage of PEM. Some examples illustrating inapplicability of TMM to non- Rayleigh 

geometries can be found in [5].  

Let us now consider the particle irradiated by a plane wave, incident at random angles 

0 . We can calculate scattering characteristics of the particle averaged by irradiation angles. 

For example, the single-particle scattering cross section scaC , averaged over the ensemble 

of random orientations, can be calculated in the T-matrix method as [2] 
2| |sca nm

n m

C T  (see also Eq. (1) and Eq. (7)). Similarly, as follows from the equations 

(4) and (7), in the method of pattern equations the same value can be calculated as 

1| ( ) |sca nm mp

n m p

C I G C  , where 
2
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0

0
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2
mp m pC c c d






  . Our simulations show that 

equal accuracy of the scaC  requires twice as much computation time using the pattern 

equation method, relative to the T-matrix method. 

To summarize, the comparison of PEM and TMM clearly demonstrates that PEM is 

unconditionally superior to TMM in terms of accuracy and applicability. The price for this is 

some increase of computation time. The averaging of scattering characteristics by orientation 

of the particle is similarly simple in both PEM and TMM.  
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