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Diffraction of a plane wave on a grating consisting of im-
pedance bodies of revolution
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The three-dimensional problem of plane electromagnetic wave scattering on a grating consist-
ing of coaxial impedance bodies of revolution is considered. An infinite system of integral
equations, to which the initial problem is reduced, is derived. An efficient algorithm for the
calculation of the periodic Green’s function is offered. The angular dependence of the scatter-
ing pattern is obtained.

INTRODUCTION

The paper considers diffraction of a plane electromagnetic wave on an infinite periodic grat-
ing consisting of impedance bodies of revolution located at one axis. To solve the problem,
we use a modified null field method (MNFM), which has previously been successfully ap-
plied in [1, 2]. The null field method (NFM), often named in the literature also as a method
of T-matrix [3], has been offered for the first time by Waterman [4]. The basis for the me-
thod is a certain relation (see below) which is satisfied everywhere inside the scatterer. If we
require that this relation is fulfilled on some closed surface inside the scatterer, the initial
boundary problem is reduced to the integral equation of the first kind relative to an unknown
current distributed on the surface of the body. In [1, 2], it has been shown that the integral
equation has the solution corresponding to the boundary problem, if and only if the surface
(designated in these works with the letter ) on which the condition of the null field is ful-
filled, covers the set of singularities of analytical continuation of the diffracted field inside the
scatterer. Besides, it is shown that, for the development of high-speed and stable algorithms,
the surface X should be constructed by means of analytical deformation of the surface of the
scatterer [5].

Notice that, in solving the considered problem, we face the development of an efficient
algorithm for the calculation of the periodic Green’s function. We calculate the Green’s func-
tion by the method analogous to the approach proposed in [6], which considered the prob-
lem of diffraction on a body in a circular waveguide.

DERIVATION OF THE MAIN RELATIONS

Consider a grating consisting of identical coaxial impedance bodies of revolution. We assume
that the grating has a period d . Introduce a Cartesian coordinate system and direct the Z -

* Cotresponding author: Alexander G. Kyurkchan (kyurkchan@gyandex.tu)

114



Helsinki 2010 A.G. Kyurkchan & S.A. Manenkov Diffraction on a grating

axis along the axis of the grating. Denote by S, the surface of the central element of the
grating. We suppose that the structure is irradiated by the plane wave:

E° = p, exp(—ikr(sin , sin @cos(p — ¢,) + cos 6, cos b)) , 1)

where (r,0,¢) are the spherical coordinates, K is the wave number, and 6, ¢, are the

incidence angles of the plane wave. The diffracted field outside the grating obeys the homo-
geneous Maxwell equations and also satisfies the Floquet periodic conditions:

E'(p.p.2+d)=E'(p,0,2)exp(-ix), @

where &k =kd cos g, is the Floquet parameter and (p, @, Z) are the cylindrical coordinates.

The formulas for the magnetic field are similar. The diffracted field also obeys the radiation
condition at infinity. On the surface of each element of the grating, the impedance boundary
condition

NxE=Z,nx(nxH) 3)

is satisfied. Here 1i is the outward normal and Z; is the impedance.

Let us apply MNEFM. For this aim, we construct the auxiliary surface X, which is located
inside the original surface S, of the central element of the grating. If the equation of the
surface S, in the spherical coordinate system has the form r =r(6) , the auxiliary surface is
defined by the equations: X=rI,SiN€ coSp, Yy=r, sind, sing, zZ=r, COSE,,
where [5]

6, =arg&(e), 1, =|&()|, &) =r(z +i5)exp(ir - ), @

In formulas (4) J is a positive parameter responsible for the degree of deformation of the
contour of the body axial cross section and 7 €[0, z]. The choice of the parameter O is

detailed in [1, 2, 5]. In accordance with MNFM we state the following condition at the
auxiliary surface X :

N x I[—ig(—(J,V’G)VG +K23G ) +kZ, (VG x (1 x J‘))]ds’ ——fixE°, (5

So

where 1€, J is the unknown current on the surface S; of the central element of the

grating, and ¢ is the wave impedance. This equation is solvable only on condition that the

surface X, covers the set of the singularities of the analytical continuation of the diffracted

field inside S,. The function G in Eq. (5) is the periodic Green’s function:
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G(F,F)= > Gy(R,)exp(-isk), where

S=—0

exp(—ikR,)

GR)=— R

LR =P +p? —2pp'cosy +(z—2' —sd)?, y=p—¢. ()

Expand the unknown current J and the Green’s function into the Fourier series:

It = Y L O exp(ing), )
G(r o0 p—¢) = i S_(r,6,r', 0" exp(im(p — ). ®

Then we define | (t) = I;(t)r—() I+ 1 (@O, + Iri(t)lw, where iy, 1y, 1, the unit vectors
r(t)

of the spherical coordinates and the prime denotes the derivative by the corresponding ar-
gument. Using formulas (5) — (8), one can obtain the following system of integral equations:

T

j KX (z,t)11 (t)dt + j K2 (z,t)12 (t)dt = BL (),

0

; ,, ©)
[KE @01, (Odt+ [KZ (7,017 (t)dt = B (2),

where m=0,£1,42,..., 7€[0, 7]. The kernels of this system are expressed by the coeffi-

cients S, and their detivatives. Note that the system (9) is solved by the collocation tech-

m

nique [1, 2, 5].

NUMERICAL RESULTS IF.| >

38 ! "
To test the method, we consider the problem 3 ,l
of wave scattering by a grating consisting of 25

closely-spaced superellipsoids of revolution.
The axial cross-section of the superellipsoid is
defined by the equation

154 ==t

—— —
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—| +| -] =1. Fi 1
a c gure 1.

For large values of the parameter | and small distances between the scatterers, the problem
of such a geometry is only slightly different from the two-dimensional problem of scattering
by an infinite circular cylinder (it is assumed that the plane wave is incident perpendicular to
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the axis Z and the electric vector is parallel to the axis of the structure). As is well known,
this problem has an analytical solution. In Fig. 1, the distribution of the pattern F,(6,,®) of

zero mode of the grating is presented. In cylindrical coordinates, the pattern is defined by the
formula

Bl oi/s Z F (0, exp(—iv;p—iwsz) (10)

2kd N ’

where W, =(k +278)/d, v, =k* =W, , 6, =arccos(W,) . The sign of square root is
chosen so that its imaginary part is not positive. The parameters of the problem are the fol-
lowing: ka=2.5; kc=5; 1=10, period of the grating kd =10.1, ¢, =0, 6, =7/2,
P, = TZ . Curve 1 in Fig. 1 demonstrates the dependence of the pattern for the grating con-

sisting of the superellipsoids and curve 2 corresponds to the case of scattering by the infinite
circular cylinder with radius ka=2.5. One can see rather small differences between the
dependences.
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