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An automatic classification system for ice crystals is being developed based on shape param-
eters derived from crystal silhouette perimeters. As a test set, we use a small sample of crystal
silhouettes captured by a cloud particle imager in cirrus clouds. Preliminary results show that
the chosen parameters are suitable for separating single and aggregate crystals, and further,
dividing these into plates, plate aggregates, single rosettes, and rosette aggregates. Columns
and bullets remain as one unseparated group. The results are encouraging for future studies
on larger observational data sets, but also offer a method for testing ice-crystal shape models
against images of real ice crystals.

INTRODUCTION
Tropospheric cirrus clouds have a considerable effect on the radiation balance of the Earth.
The radiative impact depends largely on the single-scattering properties of individual ice crys-
tals, which in turn depend on the sizes and shapes, i.e. habits, of the crystals. This makes
determining the habit distribution a critical factor for assessing ice-cloud radiative impacts.
Since these clouds are found in 6-10 km height, observing single ice crystals is challenging
and usually carried out using a cloud particle imager (CPI) attached to an airplane. CPI
images reveal that large ice crystals possess shapes varying from single hexagonal columns,
bullets, and plates to regular and irregular aggregates of these crystals [1]. The presence
and proportion of each shape in an ice cloud depend on the prevailing meteorological con-
ditions and, therefore, may vary between clouds. With an automatic classification system,
the ice-crystal shape distribution of a cirrus cloud can be obtained efficiently. Classifica-
tion also reveals valuable information on the ratio of cross-sectional area to the maximum
dimension of the crystals: maximum dimension is used for defining crystal size; whereas,
cross-sectional area determines the extinction cross section, a key parameter in radiative
transfer considerations.

SILHOUETTE SHAPE CLASSIFICATION
CPI images of ice crystals present, in fact, silhouettes of crystals, as demonstrated in Fig. 1.
They are taken by illuminating the crystal with a laser beam while the crystal is located in
between the camera and the light source. Interpretation of silhouettes is challenging because
three-dimensional shapes of real ice crystals cannot be unambiguously derived from CPI
images without assumptions. For instance, single columns, bullets, and plates can produce
exactly similar silhouettes when photographed directly from the top. Other complicating
issues are the limited resolution and laser diffraction patterns on the images.

First step in the classification is to detach the perimeters of the crystals from the CPI
images. Then, the extracted perimeters of crystals are discretized into 360 points using
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Figure 1. Sample ice crystal silhouettes. From top row to bottom: bullets, columns, plates,
plate aggregates, column or bullet rosette aggregates, and column or bullet rosettes.

cubic splines so that the distance of two adjacent points along the perimeter is constant.
The total length of the perimeter is then normalized to 360 degrees. This allows us to
define an invariant angle γ, which corresponds to a certain proportion of the entire length
of the perimeter, for instance γ = 90 degrees equals to 25 % of the total length of the
perimeter. Angles are measured along the perimeter because this simplifies the treatment of
non-starlike silhouettes.

In the next phase, certain shape parameters are calculated from the perimeter. The
chosen parameters characterize the crystals in different ways and can be, therefore, useful in
classification. The parameters considered are the following:

� Ratio A of the area inside the perimeter to the area of the convex hull.

� Aspect ratio. This is calculated as the ratio of the maximum length between two
perimeter points to the maximum perpendicular width.

� RatioR of the original length of the perimeter squared to the area inside the perimeter.

� Average of the length of the line segment d̄(γ) and its autocovariance cov(d(γ, φ))
(cf. [2]): d(γ) is the distance of two perimeter points separated by an invariant angle
γ, d̄(γ) is the average over the perimeter, and cov(d(γ, φ)) measures the correlation
of two line segment lengths separated by an invariant angle φ. Here we have used
γ = 30, 90, and 180 degrees, and φ = 0, 30, 90, and 180 degrees for the invariant
angles, which results in 15 parameters.
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� Average of the angle between the surface normal vectors ᾱ(γ) and its autocovariance
cov(α(γ, φ)): α(γ) is the anglemeasured between two surface normals of the perime-
ter points separated by γ. The invariant angles have values of γ = 5, 10, 30, 90, and
180 degrees, and φ = 0, 10, 30, 90, and 180 degrees, which leads to 30 parameters.

The classification itself includes two phases: first, we divide the crystals into compact
and aggregate particles and then do the classification separately for both types. Compact
and aggregate particles are separated according to parameter A, since it is equal or close to
unity when considering compact crystal shapes, i.e. single plates, columns, or bullets. Thus,
the value for compact particles is set toA ≥ 0.95; other shapes are considered as aggregates.

In the second classification phase, we utilize different parameters for compact and aggre-
gate crystals. Compact crystals are characterized by aspect ratio and parameter R; whereas
for aggregates, we useA, aspect ratio, d̄, cov(d), ᾱ, and cov(α). Then, principal components
analysis (PCA) is applied to the parameters to better distinguish the differences between the
crystal properties. PCA transforms the input data vectors to a coordinate system where
most of the information included in the input parameters is shown in fewer dimensions,
defined by the most significant principal components. The outcome of PCA can then be
used as a basis for classification.

PRELIMINARY RESULTS
As a test set we use altogether 60 CPI images, including both single and aggregated bullet,
column, and plate crystals, 10 of each as shown in Fig. 1 on separate rows. The crystals in
the images are identifiable and yet representative of their class, for instance the images of
bullets and columns show varying aspect ratios and orientations.

The first results of the silhouette classification reveal that the division into compact and
aggregate crystals based on the criterionA ≥ 0.95 works perfectly for this test set, resulting
in 30 compact and 30 aggregate crystals. For these separate groups, further results of the
classification utilizing PCA are presented in Fig. 2, which shows the crystals in the coordinate
system of the two most significant principal components of each data set. In the case of
compact shapes, the plate-like crystals form a very dense group easy to identify; whereas, the
bullets and columns tend to overlap. This means that the chosen parameters are not ideal
for separating these two types of shapes. Also, some of the column-like crystals are close
to the plates, which can be explained by looking at the test images: the columns with small
aspect ratios do resemble the shape of the plate crystals in reality, as well.

The aggregate crystals divide into three distinguishable areas in the principal compo-
nents space. According to Fig. 2, the single rosettes form a dense group indicating that the
chosen parameters yield quite similar results to the rosettes, regardless of the observable
differences among the silhouettes. This seems to apply to the rosette aggregates, as well.
The plate aggregates, however, are distributed more widely. This can be due to the large
variation in the number of the plates in the aggregates, which could be a useful feature in
further classification and shape analyses.

CONCLUSION
The novel classification system for ice-crystal silhouettes proves to be efficient in separating
the crystals of the test set: only single bullets and columns remain inseparable with the
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Figure 2. Compact (left) and aggregate (right) ice crystals in a coordinate system of two
most significant principal components. For compact crystals, the squares, circles, and dia-
monds correspond to bullets, columns, and plates, and in the case of aggregate crystals, to
plate aggregates, rosette aggregates, and single rosettes, respectively.

shape parameters used here. The next steps of the study are to develop new and improve
the existing parameters used in PCA, and to apply an algorithm for classifying the PCA
results automatically, for instance the nearest neighbor –algorithm. With this, the statistical
reliability of the classification results can be assessed. Moreover, the classification needs to
be tested for a larger data set that includes more irregularly shaped crystals. Applying the
classification tool to the crystal silhouettes previously classified as irregulars or unclassifiable,
can indeed reveal interesting common features among the crystals.

In addition to real CPI data, the classification system presented here can be applied
to simulated crystal shapes. By generating synthetic silhouettes from model crystals and
deriving the shape parameters it is possible to verify that model shapes statistically resemble
the corresponding, real ice crystal shapes.

Finally, an intriguing and relevant question is that how do the single-scattering prop-
erties change between the classes and whether there is notable variation in the scattering
characteristics inside a class. For this study, the models for ice crystals need to be improved
to obtain a wider and more realistic view on the collection of shapes of naturally occurring
ice crystals.
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