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Scattering of light by Gaussian-random-ellipsoid particles

*,1,2
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We introduce the stochastic geometry of a Gaussian random ellipsoid (GE) and, with the
discrete-dipole approximation, carry out preliminary computations for light scattering by
wavelength-scale GE particles. We compare the scattering characteristics of GE particles
to those of perfect ellipsoids.

INTRODUCTION

Natural small particles may exhibit irregular shapes with preferential elongation or flattening;
Here the shapes of such irregular small particles are modeled using the stochastic geometry
of what we call a Gaussian random ellipsoid (GE). GE is a natural extension for the Gaussian
random sphere (GS; e.g [1, 2]) and GE transtorms to GS in the limit of vanishing elongation
and flattening.

Scattering properties for GE particles are studied here with the discrete-dipole approxi-
mation. DDA is a flexible method for numerical solution of scattering by irregular particles
(e.g [3]). We utilize the Amsterdam DDA code by Yurkin et al. [4]. In what follows,
we introduce the stochastic geometry for GE. We then proceed to present the first DDA
computations for scattering by GE particles.

GAUSSIAN RANDOM ELLIPSOID

In GE, lognormal height statistics are imposed on a base ellipsoid along the local normal
direction. As compared to GS, GE introduces two additional shape parameters: the axial
ratio b : a or, equivalently, the elongation (@ — b) : a; and ¢ : b or the flattening (b — ¢) : b.

The ellipsoidal base geometry raises fundamental issues concerning the homogeneity of
the superimposed statistics. In GS, the great-circle distance utilized in the correlation of two
radial distances can be interpreted in two ways: first, the distance can be taken literally as the
great-circle angle between the two points; second, it can be unambiguously mapped to the
Cartesian distance for the two points on the base sphere. In a corresponding way for GE,
the distance between two points on the base ellipsoid can be measured along the geodetic
line connecting the points or as the Cartesian distance between the points. In the present
context, we utilize the Cartesian distance in correlating heights on the base ellipsoid.

Due to the requirement of height variation along the local normal vector, further con-
straints must be introduced for the mean height corresponding to the mean radial distance
in GS. We define the mean height  to coincide with the minimum radius of curvature for
the base ellipsoid with semiaxes a, b, and c. This implies that the single center point of GS
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Figure 1. Sample Gaussian ellipsoids witha : b : ¢ =1 : 0.7 : 0.6, 0 = 0.05, and

{=0.2.

evolves into a surface of center points for GE (note that this surface is not ellipsoidal in

shape). In summary, the position of any point on a sample GE can be expressed as
1
r(r&a ¢) = TE(ﬁv ¢) +h exp 8(19’ ¢) - §ﬁ2 -1 n(ﬁ) ¢)7 (1)

where ¥, ¢ are the polar and azimuthal angles of the spherical coordinate system, rg (1, ¢)
and n(9, ¢) denote the local position and unit outward normal vectors on the base ellipsoid,
respectively, s is the logarithmic height and a Gaussian random variable, and 3 is the standard
deviation of s. The relative variance of heights is 02 = exp(3%) — 1. Note, in particular,
that 7(1J, ¢) no longer points in the direction specified by the spherical coordinates ¥, ¢.

RESULTS AND DISCUSSION

We compute scattering matrices for GE patticles with size parametets ka = 3 or ka = 6,

complex refractive index m = 1.55 4 10.001, standard deviation o = 0.05, correlation

length ¢ = 0.2 in a Gaussian correlation function Cs(d) = exp(—%%) (d is the Cartesian
distance between two points on the base ellipsoid), and axis ratioa : b: ¢ =1 : 0.7 : 0.6
(see Fig. 1 for sample shapes). The scattering characteristics are ensemble-averaged over 100
GE realizations and the scattering characteristics are orientation averaged over 242 different
orientations for each realization. The scattering volume is discretized into 32 X 32X 32 =
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Figure 2. Ensemble-averaged angular scattering characteristics for GE particles with base-
ellipsoid axial ratioa : b : ¢ = 1 : 0.7 : 0.6 and complex refractive index m = 1.55+i0.001
using Discrete-Dipole Approximation: a. Scattering-matrix element S1; b. Degree of linear
polarization —S21/S11; ¢. S22/S11; d. S33/511; . S34/511; £ Saa/S11. Four cases are
shown: I. GE with ka = 3 (solid line); II. GE with ka = 6 (solid line); III. base ellipsoid
with ka = 3 (dashed line); IV. base ellipsoid with ka = 6 (dashed line).
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32768 cubic cells for ka = 3 or into 64 X 64 x 64 = 262144 cells for ka = 6, well within
the validity criteria of DDA.

Fig. 2 illustrates the results of the scattering computations. The GE particles exhibit
overall angular characteristics commonly encountered in scattering experiments for small
particles as well as numerical computations for other irregular particles. The scattering-
matrix element S71 shows the precursor of the forward diffraction pattern as well as in-
creased backward scattering, The increased backward scattering can also be envisaged as a
deep minimum next to the backward scattering direction caused by a destructive interference
(e.g., [5]). The degree of linear polarization —S21/511 shows clear negative polarization at
intermediate scattering angles (cf. [6]) as well as pronounced branches of negative polariza-
tion near backscattering. The remaining scattering patterns S22/511, S33/511, S34/511,
and S44/511 also resemble those obtained for GS particles.

Comparison to scattering by regular base ellipsoids shows that adding irregulatity on the
base ellipsoid results in smoothing of all angular patterns. The scattering-matrix elements
S11 ate quite similar for randomly otiented base ellipsoids and Gaussian ellipsoids. Of all the
angular patterns, the degree of linear polatization —Sa; /511 appears to be most sensitive
to the surface irregularities.

CONCLUSION

In the future, we will develop a Gaussian random ellipsoid where the correlation is measured
along the geodetic line on the ellipsoid. In addition, the Gaussian-ellipsoid geometry can
turn useful in physical studies of small solar-system bodies.

The direct problem of light scattering involves the computation of scattering by small
particles with varying size, shape, and refractive index or optical properties in general. The
inverse problem concerns retrieving particle properties based on observations or laboratory
measurements of their scattering and absorption properties. We envisage that the Gaussian
random ellipsoid can become a useful tool for irregular small particles in inverse problems.
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