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Light scattering by large faceted particles 

A. Borovoi* and N. Kustova 

V.E. Zuev Institute of Atmospheric Optics, Academician Zuev sq. 1, Tomsk 634021 Russia. 

The problem of calculation of the scattering matrices for large faceted particles within the 

framework of physical optics is split into three steps. First, we find the matrix in the geometric 

optics approximation. Second, we calculate the so-called Fraunhofer diffraction matrix. And, 

finally, the matrix desired is found as an integral transform of the geometric optics matrix by 

means of the Fraunhofer matrix.   

INTRODUCTION 

The problem of light scattering by large, as compared with the incident wavelength λ, non-

spherical particles, i.e. a >> λ where a  is a characteristic particle size, is successfully solved on 

the basis of the Maxwell equations if the size parameter ρ = a /λ does not exceed, the value 

of about 10 (see e.g. [1]). The opposite case ρ >>1 is conventionally calculated by use of 

geometric optics, in particular, by means of the ray-tracing technique [2]. To fill the gap of 

the intermediate case of ρ ≈ 10, physical optics is an obvious and rather simple instrument [3-

6]. However the physical-optics approximations are often restricted by taking into account 

only diffraction near the forward-scattering direction, which is produced by particle projec-

tions or shadows (e.g., [7]). 

In the case of large faceted particles like atmospheric ice crystals, the problem of light 

scattering within the framework of physical optics can be analytically reduced to a simple 

extension of the geometric-optics solution that is the topic of this presentation.  

GEOMETRIC-OPTICS AND PHYSICAL-OPTICS SCATTERED WAVES 

In general, a solution for any electromagnetic wave scattered by a particle is defined by a 

superposition of the incident E0 and scattered 
s

E   waves 
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at any spatial point r. At large distances from the particle, the scattered wave 
s

E is conven-

tionally considered on the scattering direction sphere n (|n|= 1) as the function )(nE
s

. In 
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the near zone, i.e. at a distance r << ka 2 where k = 2/ is the wavenumber, the scattered 

wave for a large faceted particle becomes strictly a superposition of discrete plane-parallel 

beams leaving the particle at various propagation directions 
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Here every beam )(rE
s

j is characterized by its transversal size and shape, polarization and 

propagation direction n j . At large distance from the particle r >> a, the beam propagation 

directions n j become equivalent to the scattering directions, and the scattered wave on the 

scattering direction sphere n is reduced to a singular function. This singular function is strict-

ly the superpositions of the Dirac delta-functions δ(n – n j). Fig. 1 shows an example of the 

functions calculated for a fixed particle orientation. Note that the superposition of Eq. (2) 

includes not only the beams produced by an arbitrary number of reflections and refractions 

on the particle facets but also a shadow-forming beam (see e.g. [6, 8]). Appearance of the 

shadow-forming beam follows immediately from the superposition of Eq. (1) by subtraction 

of the incident wave from the total one. The shadow-forming beam propagates in the inci-

dent direction n0 and its transversal shape corresponds to the particle projection. 

 

  

Figure 1. Phase function for a bullet ice crystal 

of a fixed orientation. The brightness   of the 

dots is proportional to energy of the beams. 

Figure 2. Phase functions for randomly 

oriented hexagonal ice plate and column 

(Q=diameter/length). 

  

When the singular functions like those shown in Fig. 1 are averaged over particle orien-

tations the δ-function singularities are smoothed in the majority of directions n resulting in 

some regular functions as shown in Fig. 2. Nevertheless some singularities still are left at 

certain directions manifesting themselves in Fig. 2 as sharp peaks. Note that the appearance 

of singularities is typical for the majority of functions obtained within the framework of 

geometric optics. 

The superpositions of Eqs. (1) and (2) remain valid at arbitrary distances from the par-

ticle. As a result, in the wave zone r >> ka 2 every dot in Fig. 1 should be smeared into a 

Fraunhofer diffraction spot. In other words, the δ-functions δ (n – n j ) should be replaced by 
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the Fraunhofer diffraction functions )( jjF nn  obeying the same normalization 

  .1)( nn dF j  Similar replacements should also take place for any values averaged over an 

arbitrary probability distribution of particle orientations like the curves in Fig. 2. In general, 

we find the Mueller scattering matrices of the physical optics approach MP become the fol-

lowing integral transform of the geometric optics matrix MG 

        nnnMnnFnnM dGP ),(),(),( 00 , (3) 

where the matrix F takes into account the Fraunhofer diffraction of the near-zone plane-

parallel beams along with their interference on the scattering direction sphere n .  

SPECULAR (ONCE-REFLECTED) SCATTERING 

For a large faceted particle with random orientation, the light once–reflected by its facets can 

be calculated analytically. In our recent paper [9], we have considered the general case of an 

arbitrary distribution of such a particle over its orientation. In particular, if the normal N to a 

particle facet is distributed as p (N), the average specular intensity IG(n) produced by reflec-

tion from this facet is described by the following equation      
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where s is the facet area and R is the Fresnel reflection coefficient. 

For convex particles, the total specular scattering intensity is just a sum of intensities ob-

tained by means of Eq. (4) for all facets. Then, if a facet can be approximately replaced by a 

circle, there is an analytical equation for the Fraunhofer diffraction functions (see Eq. (16) of 

Ref. [9]). And, finally, 2D-convolution of the geometric optics value of Eq. (4) with the dif-

fraction function F results in the specular phase function in the physical optics approxima-

tion. This result is a simplified case of the general equation (3). 

BACKSCATTERING BY HEXAGONAL ICE CRYSTALS 

The proper geometric optics values for the case of ice hexagonal crystals were studied in 

details in our previous paper [10]. In particular, we proved that there are four types of photon 

trajectories that make contributions to backscattering.  Unlike the abovementioned problem 

of specular scattering, this calculation is more complicated since we have to take into account 

the singularity appearing in the geometric optics approximation at the strict backward direc-

tion. We overcome these difficulties by cumbersome numerical calculations. The results 

obtained will be presented at the conference. 
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  Figure 3. Four types of photon trajectories making main contribution to backscattering. 
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