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The different iterative approaches (GMRES, MINRES, BiCGStab, BiCGStab(2)) to solve
linear systems in scattering problems based on surface-integral-equation methods (Discrete-
Sources Method, T -matrix) are compared. The case where the kernel matrix is relatively small
but ill-conditioned is considered. Different preconditioning techniques (diagonal, block-
diagonal preconditioning matrix) are also compared.

INTRODUCTION

The numerical simulation of light scattering by small particles is a modern and effective
approach to investigate many physical processes. During the centennial history, a lot of
numerical methods have been developed and extended. Most of them require or imply to
solve the linear system problem.

Solving the linear system can be subjected to numerical difficulties because of the ill-
conditionality of the kernel matrix and the finite-precision arithmetic in computers. The
iterative methods help to reduce the influence of this factor and to decrease the required
time to estimate the solution. The extremely large, sparse, ill-conditioned kernel matrix
is the case where the iterative methods are mostly preferable. Therefore, they are used
in volume-integral-equation methods like DDA (discrete-dipole approximation). Precondi-
tioning techniques also allow to strongly improve the convergence of iterative processes.

Here, different iterativemethods and preconditioning techniques for theDiscrete-Sources
Method (DSM) and the T -matrix Method labeled as surface-integral-equation methods are
compared. Cases with relative small but highly ill-conditioned kernel matrices are consid-
ered.

MATHEMATICAL STATEMENT OF THE SCATTERING PROBLEM
Let us consider scattering in an isotropic homogeneous medium R3 of an electromagnetic
wave by a local homogeneous penetrable obstacle Di with the smooth boundary ∂D. We
assume the time dependence to be exp (jωt). Scattering is described by the electromagnetic
fields {Ee,i,He,i} satisfying the Maxwell equations

∇×He,i = jkεe,iEe,i,
∇×Ee,i = −jkµe,iHe,i,

in De,i, De := R3/D̄i, (1)

the boundary conditions enforced on the particle surface

np × (Ei (P )−Ee (P )) = np ×E0 (P ) ,
np × (Hi (P )−He (P )) = np ×H0 (P ) ,

P ∈ ∂D, (2)

and the Silver-Muller radiation condition at infinity,

lim
r→∞

(√
εeEe ×

r

r
−√

µeHe

)
= 0, r = |M | → ∞, (3)
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where
{
E0,H0

}
is an exciting field, np is the unit outward normal to ∂D , index e belongs

to the external domainDe and i to the domain inside the particleDi, εe,i is the permittivity,
and µe,i is the permeability of media. This boundary value scattering problem is well-known
to have an unique solution.

T -matrix Method
The T -matrix approach is a modern and effective numerical tool for exactly solving the
scattering problem for particles of arbitrary shape. It was proposed by Waterman [1] and
extensively reviewed by Mishchenko et al. [2]. The further extension of the method is called
the Null-Field Method with Discrete Sources (NFM-DS) [3].

In the terms of NFM-DS the internal electromagnetic field is expanded by a suitable
basis of vector wave functions, e.g. in an isotropic medium regular vector spherical wave
functions are used

Ei(r) =
∞∑

n=1

n∑
m=−n

[pmnRgM(ksr) + qmnRgN(ksr)] , ki =
√
εiµi. (4)

The electromagnetic fields outside the circumscribed sphere are expanded into a series of
spherical vector wave functions

Ee(r) =
∞∑

n=1

n∑
m=−n

[amnM(ksr) + bmnN(ksr)] , ks =
√
εsµs, (5)

Es(r) =
∞∑

n=1

n∑
m=−n

[fmnRgMi(ksr) + gmnRgNi(ksr)] , (6)

where ks is the wave number of the isotropic surrounding medium, and amn, bmn and
fmn, gmn are the expansion coefficients of the incident and scattered fields, respectively.
Considering the null-field equations (2) and the expansions (4-6), the transition matrix T
can be obtained from the following linear system:

T ·Q31 = −Q11,

(
fmn

gmn

)
= T

(
amn

bmn

)
, (7)

where the matrices Q31, Q11 include surface integrals over the particle surface. In real
simulations, the matrix size depends on the expansion order 1 ≤ n ≤ Nrank in (4-6) and is
typically less than 10000.

Discrete Sources Method
In the frame of DSM, an approximate solution of the scattering problem is constructed
as a finite linear combination of the field of dipoles and multipoles {zn}Nn=1 deposited in
a supplementary domain ω0. Detailed review can be found in the book by Wriedt et al.
[4]. In the case of a P-polarized incident plane wave and an axially symmetric particle, the
approximate solution can be presented in the form

(
EN

e,i

HN
e,i

)
=

M∑
m=0

Nm
e,i∑

n=1

{
pe,imnD1A

1,e,i
mn + qe,imnD2A

2,e,i
mn

}
+

N0
e,i∑

n=1

re,in D1A
3,e,i
n (8)

with vector differential operators D1, D2, the vector potentials in a cylindrical coordinate
systemA1,e,i

mn ,A2,e,i
mn ,A3,e,i

n , and the amplitudes of the corresponding multipoles pe,imn, qe,imn,
re,in .
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The unknown amplitudes of the discrete sources are to be determined from the bound-
ary conditions (2). To solve this problem, the Generalized Point-Matching Technique is
used. The matching of the approximate solution and the external excitation over the parti-
cle surface is replaced by the matching over particle generatrix {ηn}Ln=1 for each Fourier
harmonic m separately. As a consequence, the unknown vector of amplitudes pm =

{pe,imn, q
e,i
mn}

Nm
e,i

n=1 can be found as a pseudosolution of an over-determined system of linear
equations:

Bmpm = qm, m = 0, ...,M, (9)

where Bm is a rectangular matrix of dimension 4L × 2(Nm
i + Nm

e ). Similarly, the am-
plitudes p−1 = {re,in }Ne,i

n=1 corresponding to the vertical electric or magnetic dipoles can be
found.

Solving this problem we transform (directly or formally) the equation (9) to its 'equiva-
lent' normal form (n = m) (10) through multiplication by the conjugate transpose matrix,

Ampm = b̂m, Am = BT
mBm, b̂m = BT

mqm. (10)

HereAm is a Hermitian, non-singular, positive definite matrix with the dimension 2(Nm
i +

Nm
e )× 2(Nm

i +Nm
e ). Usually, the matrix size lies in the range between 500 and 5000.

ITERATIVE SOLVERS

Krylov subspace
Many powerful and effective methods are Krylov subspace projection methods. These
methods were initiated in the early 1950s with the introduction of the conjugate gradients
methods [5]. For a given non-singular matrix A, an approximate solution is constructed in
the so-called Krylov subspace

xk ∈ x0 +Kk(A; r0), Kk(A; r0) = span{r0, Ar0, . . . , Ak−1r0},

where r0 = b − Ax0 is an initial residual, x0 is a given initial solution, and k is the itera-
tion step. Because of the non-singularity ofA, the vectors r0, Ar0, . . . , A

k−1r0 are linearly
independent and the Krylov subspace is a k-dimensional space. This means that the di-
mensionality of the subspace will increase by 1 up to n per iteration. The Krylov subspace
methods should give the exact solution after at least n iterations, but they give a suitable ap-
proximate solution much earlier. By the criteria on 'optimality', these methods fall in three
different classes:
The Ritz-Galerkin approach — Construct the xk ∈ x0 + Kk(A, r0) for which the residual
rk = b − Axk is orthogonal to the current subspace rk ⊥ Kk(A, r0). The commonly
used methods for symmetric (Hermitian) matrices are CG, SYMMLQ, for non-symmetric
matrices are FOM, CGNE, CGNR.
The minimum residual approach— Construct the xk ∈ x0+Kk(A, r0) for which the Euclidian
norm ∥b−Axk∥2 is minimal over the current subspace. The commonly used algorithms of
the current group are GMRES, RGMRES, FGMRES, GMRESR and version of GMRES
for symmetric (Hermitian) matrices MINRES.
The Petrov-Galerkin approach — Construct the xk ∈ x0 + Kk(A, r0) for which the resid-
ual rk is orthogonal to some other suitable k-dimensional subspace. If we select Lk =
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Kk(AT , s0) for some vector s0, then we obtain the BiCG and QMR methods and their
further modifications CGS, BiCGStab, BiCGStab(l) and TFQMR, respectively.

Based on preliminary simulations, for further comparisons, the following methods
RGMRES(m), BiCGStab, BiCGStab(l) (PIM library [6]) and MINRES were chosen.

PrecondiƟoning techniques
One of the advantages of the iterative methods is the availability of preconditioning tech-
niques. The convergence of an iterative process and the accumulation of round-off errors
strongly depend on the condition number κ(A) = max ∥λi∥//min ∥λi∥, where λi is the
i-th eigenvalue of the matrix A. By multiplication (left- and/or right-sided) by some other
matrixK , we can change the condition number and therefore improve the iterative process.

Because the calculation of well-known preconditioners (ILU, ILUT, IC, polynomial pre-
conditioner) for ill-conditioned dense matrices could be numerically difficult and unstable,
diagonal matrix preconditioners D = diag{d11, d22, . . . , dnn} with different filling rules
as well as two-diagonal preconditioners are chosen. To keep the Hermitian symmetry of the
matrix A, we used the left and right preconditioning Â = D1/2AD1/2, P = D1/2.

In Fig. 1, the iterative behavior of the scattering computation using the DSM method is
plotted. The scatterer is a prolate spheroidal particle with size parameter kR = 50, aspect
ratio e = 10, and refractive index mr = 1.6. As a measure of the quality of the solution,
the discrepancy of the surface fields (∥np × (Ei −Ee −E0)∥/∥E0∥) is used.

A) B)

Figure 1. The iterative behaviour of scattering computation using iterative solvers (a) with-
out preconditioning techniques and (b) with a block-diagonal preconditioning matrix.
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