
Inhomogeneous cylinders G.P. Zouros & G.D. Tsogkas ELS'XII

ElectromagneƟc scaƩering by an inhomogeneous circu-
lar cylinder using fast convergent series expansions
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In this paper we examine the scattering of a TM plane wave by an infinite circular cylinder hav-
ing inhomogeneous optical properties e.g. ρ–varying permittivity ϵ(ρ). The method is based
on constructing the volume integral equation and then expanding the unknown functions in
Dini's series, which have the characteristic of being fast convergent. Numerical results are
given for the various values of the parameters.

INTRODUCTION
Electromagnetic scattering problems of main interest are those which present structures
having irregular optical properties. In [1], a circular cylinder with inhomogeneous cladding
is examined using electric and magnetic current distributions while in [2], scattering from
inhomogeneous bodies using a new boundary method is presented.

In the present work we study the scattering of a TM plane wave by a circular infinite
dielectric cylinder of radius a with varying permittivity ϵ(ρ). The geometry of the scatterer
is shown in Fig. 1.

In nonhomogeneous media, Helmholtz equation has the extra term [3] ∇[2∇n(r⃗) ·
E⃗(r⃗)/n(r⃗)],withn(r⃗) being the refraction index of themedium. By selecting a slow varying
profile for n(r⃗), the term can be omitted and therefore, this concession leads to the well
known homogeneous Helmholtz equation. Then we try to solve it by constructing the
volume integral equation.

E-WAVE POLARIZATION

FormulaƟon of the problem
By applying the surface equivalence theorem [4] to the configuration of Fig. 1 and then, by
making use of the reaction theorem [4], one can arrive at the desired integral equation

Ez(ρ⃗) = E inc
z (ρ⃗) + j

k21
ωµ1

∫∫
S

[
k22(ρ

′)

k21
− 1

]
Ez(ρ⃗

′)G(ρ⃗; ρ⃗ ′) dα′ (1)

In order to come to (1), both permeabilities of the two regions, as shown in Fig. 1, should
be equal, otherwise another integral term in (1) should be placed which complicates the
problem. Because of the infinite length along z axis, volume integral has been replaced by a
surface one. In (1) S is the surface of inhomogeneity, k1,2 is the wavenumber of outer and
inner region respectively, G(ρ⃗; ρ⃗ ′) is the free space cylindrical Green's function [4] while
Ez(ρ⃗) is the unknown field. If ρ⃗ ∈ S then Ez(ρ⃗) represents the stationary field inside the
cylinder; if ρ⃗ /∈ S then Ez(ρ⃗) represents the total field outside the cylinder.
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Expansion of the fields
The incident plane wave illuminates the cylinder normally on the z axis and is impinging
with an incident angle of zero degrees. Therefore is has the form [5]

E inc
z (ρ⃗) =

∞∑
m=0

εm j−mJm(k1ρ) cos(mφ) (2)

where ρ and φ are the polar coordinates with respect to xOy, Jm is the cylindrical Bessel
function of the first kind and εm is the Neumann factor (ε0 = 1, εn = 2, n ≥ 1). The
unknown field is expressed in the form

Ez(ρ⃗) =

∞∑
m=0

Rm(ρ) cos(mφ) (3)

where Rm(ρ) is the unknown radial function to be evaluated. Then, by substituting (2)
and (3) into (1) and applying orthogonality relations for cosines, we arrive at the following
integral equation

Rm(ρ) =εm j−mJm(k1ρ)

+
k21πεm(3− εm)

4j

∫ a

0

[
ϵ2(ρ

′)

ϵ1
− 1

]
Rm(ρ′)Jm(k1ρ

<)Hm(k1ρ
>)ρ′ dρ′

(4)

where Hm is the Hankel function of the second kind while ρ< = min(ρ, ρ′) and ρ> =
max(ρ, ρ′).

Expansion in Dini's series
We expand the radial functions in (4) in Dini's series as follows[

ϵ2(ρ)

ϵ1(ρ)
− 1

]
Rm(ρ) =

∞∑
ℓ=1

AmℓJm

(γmℓ

a
ρ
)
, (5)

Rm(ρ) =
∞∑
ℓ=1

BmℓJm

(γmℓ

a
ρ
)
, and Jm(k1ρ) =

∞∑
ℓ=1

CmℓJm

(γmℓ

a
ρ
)
. (6)

In (5)–(6), γmℓ is the ℓ–th root for every different value ofm of the equation [6]

γmℓJ
′
m(γmℓ) + tmJm(γmℓ) = 0 (7)

In (7), tm is an arbitrary parameter (complex number in general) and J ′
m is the derivative

of Bessel function with respect to its argument.

SoluƟon of the problem
Substituting Dini's series expansions (5)–(6) into (4), putting position vector ρ⃗ inside the
inhomogeneity and using the well known integral of two Bessel functions and a power func-
tion [6] as well as Bessel Wronskian relations, one can calculate the unknown coefficients
Bmℓ of function Rm(ρ) for the internal field by solving the linear systems of equations

Bmℓ−
∞∑
q=1

{
εm j−mCmℓMmq +

(k1a)
2

2

εm(3− εm)

Nmℓ [γ2
mℓ − (k1a)2]

Gmℓq

}
Bmq = εm j−mCmℓ (8)
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for ℓ = 1, 2, 3, . . . and for every different value ofm = 0, 1, 2, . . ..
In (8),Cmℓ,Nmℓ andMmq are known analytical expressions whileGmℓq is defined by the in-
tegral over the inhomogeneityGmℓq =

∫ a
0

[
k22(ρ)/k

2
1 − 1

]
Jm(γmqρ/a)Jm(γmℓρ/a)ρ dρ

and is evaluated numerically for every different permittivity profile ϵ2(ρ).

The scaƩered far field
By putting the position vector ρ⃗ outside the inhomogeneity and carrying out the calculations
in (4), we obtain the unknown function Rm(ρ) when ρ > a

Rm(ρ) = εm j−mJm(k1ρ) +
k21πεm(3− εm)

4j
Hm(k1ρ)

∞∑
ℓ=1

Cmℓ

∞∑
q=1

GmℓqBmq (9)

Using now the asymptotic expansion for the Hankel function in (9), we can calculate the
cross section [4] by σb = limρ→∞

(
2πρ |Esc

z |2/|E inc
z |2

)
and therefore obtain

k1σb =
(k1a)

4

4
π

∞∑
m=0

εm (3− εm) jm cos(mϕ)

∞∑
ℓ=1

Cmℓ

∞∑
q=1

GmℓqBmq (10)

AcceleraƟon of convergence
It is apparent from (10) that, in order to calculate k1σb, the coefficientsBmq of the internal
field are required. Carrying out asymptotic analysis for Bmq reveals that Bmq = O(q−3/2)
for arbitrary values of tm while, by putting in tm a special value, it emerges that Bmq =
O(q−7/2). Therefore the series in (10) are optimized and converge faster. The aforemen-
tioned special value is obtained from (9) and is [7] −aR′

m(a)/Rm(a) with R′
m(a) being

the derivative of (9) with respect to ρ at ρ = a.

NUMERICAL RESULTS AND DISCUSSION
In Table 1, the values of back and forward scattering cross section are given for various
values of k1a and for ϵ2(ρ)/ϵ1 = 2.45 + 0.5 sin(πρ/a + 0.5). We have also compared
and verified some results of our method to a high degree of accuracy with the analytical
procedure presented in [2].

In Fig. 2, the bistatic scattering cross section is plotted for observation angles from 0◦

to 180◦. This is done for two different permittivity profiles, linear and sinusoidal, and for
various values of k1a. The results are symmetric about φ = 180◦ as it is imposed by the
geometry of the scatterer. We also observe the high sensitivity of k1σ to the change of
observation angle φ.

In Fig. 3, we depict the behaviour of convergence for the sum versus q in (10) using the
optimum and an arbitrary value for tm. The desired accuracy is achieved with much less
terms, when we use the optimum values for tm in (7) for finding the roots γmℓ.

It is noticed that we have verified analytically the known solution, when permittivity
profile is constant [4] for arbitrary values of tm. Finally, this method can be expanded for
permittivity profiles which depend on both ρ and φ.
Acknowledgments: This work was supported by the Program of Basic Research PEBE
2007 of NTUA.
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Figure 1: The geometry of the scatterer.

Table 1: Values of back and forward scat-
tering cross section for ϵ2(ρ)/ϵ1 = 2.54 +
0.5 sin(πρ/a + 0.5) and comparison with
others.
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Figure 2: Normalized cross section in
dB [10 log(k1σ)]. Linear case (black lines):
ϵ2(ρ)/ϵ1 = 2.54 + ρ/a. Sinusoidal
case (gray lines): ϵ2(ρ)/ϵ1 = 2.54 +
0.5 sin(πρ/a+ 0.5).
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Figure 3: log10 |
∑qmax

q=1GmℓqBmq −∑qi
q=1GmℓqBmq/

∑qmax
q=1GmℓqBmq| in

(10) for ϵ2(ρ)/ϵ1 = 2.54 + ρ/a and for
k1a = 4π.
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